首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18812篇
  免费   1093篇
  国内免费   214篇
电工技术   169篇
综合类   187篇
化学工业   5770篇
金属工艺   1559篇
机械仪表   203篇
建筑科学   151篇
矿业工程   146篇
能源动力   4988篇
轻工业   129篇
水利工程   13篇
石油天然气   39篇
武器工业   21篇
无线电   1748篇
一般工业技术   3863篇
冶金工业   381篇
原子能技术   247篇
自动化技术   505篇
  2024年   28篇
  2023年   2018篇
  2022年   869篇
  2021年   916篇
  2020年   1922篇
  2019年   1519篇
  2018年   656篇
  2017年   1160篇
  2016年   1078篇
  2015年   1142篇
  2014年   1312篇
  2013年   1035篇
  2012年   721篇
  2011年   582篇
  2010年   503篇
  2009年   547篇
  2008年   209篇
  2007年   584篇
  2006年   830篇
  2005年   391篇
  2004年   293篇
  2003年   297篇
  2002年   417篇
  2001年   402篇
  2000年   225篇
  1999年   332篇
  1998年   109篇
  1997年   3篇
  1995年   2篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
  1972年   2篇
  1959年   2篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
991.
《Ceramics International》2016,42(13):14867-14872
A two-step process (milling and then heat treatment) was used for the preparation of α-Si3N4 nanopowder. The influence of the milling time and heat treatment temperature as processing parameters were investigated on the formation of α-Si3N4. Silicon nitride ceramic was produced by spark plasma sintering at 1700 °C for 15 min, using MgSiN2 additive. The optimum sample was produced in a 30 h milling time, heat treatment at 1300 °C, and a 22 °C/min heating rate conditions. X-ray fluorescence analysis showed that the purity of the final product is above 98%. Nanoindentation hardness and Young’s modulus of the SPS-ed sample were measured as 17±2.0 GPa and 290±11.0 GPa, respectively.  相似文献   
992.
《Ceramics International》2016,42(15):16789-16797
Nanocrystalline mesoporous spinel magnesium ferrite (MgFe2O4) particles with high surface area were prepared by urea assisted modified citrate combustion process. The prepared sample was characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, field-emission scanning electron microscope (FE-SEM), BET surface area analyzer and impedance spectroscopy techniques. XRD results confirmed the formation of a single phase of nanocrystalline spinel magnesium ferrite sample. FTIR and Raman spectroscopy (FTIR) results confirmed the structural co-ordination of the magnesium ferrite sample. The spherical shape morphology of the prepared magnesium ferrite particles was confirmed from the FE-SEM images. Specific surface area and porosity of the MgFe2O4 sample were obtained from N2 adsorption–desorption isotherms results. The D.C. and A.C. electrical conductivities of the MgFe2O4 sample as a function of temperature and frequency were investigated by analyzing the measured impedance data. The activation energy for the migration of the carriers in the MgFe2O4 sample was found to be 0.607 eV. The dielectric studies revealed that the dielectric constant of the mesoporous MgFe2O4 sample increases with increase in temperature. Further, lithium battery was fabricated using the developed nanocrystalline mesoporous spinel MgFe2O4 as anode material and investigated its electrochemical performance. The charge-discharge studies revealed that the fabricated lithium battery using the developed nanocrystalline mesoporous MgFe2O4 as anode exhibited high capacity and good cycleability in the voltage range 0.005–3 V. The results show that the developed nanocrystalline mesoporous spinel magnesium ferrite could be a better anode material for lithium battery applications.  相似文献   
993.
《Ceramics International》2016,42(14):15843-15848
A lanthanum zirconate (La2Zr2O7, LZ) precursor has been prepared by coprecipitation of the relevant hydroxides from nitrate solution. The effect of the mechanical activation of the precursor on its thermal decomposition and LZ formation in the temperature range of 700–1100 °C has been investigated. After mechanical activation, the precursor releases volatile components (H2O and CO2) at lower temperatures. Mechanical activation accelerates the LZ crystallisation and results in the formation of phase-pure LZ without admixtures of unreacted zirconia and lanthana. The LZ powder prepared from the mechanically activated precursor is characterised by a larger BET surface area, in comparison to that synthesised from the as-prepared precursor under the same calcination conditions.  相似文献   
994.
《Ceramics International》2016,42(3):4256-4261
The influence of the sintered microstructure on the electromagnetic properties of Cu-doped NiZn ferrites were investigated. Two of the main variables of the thermal cycle have been modified: the maximum sintering temperature and the dwell time at that temperature, or sintering time. The evolution of the imaginary part – µ″ of the complex magnetic permeability was studied as a function of relative density, grain size and amplitude of the grain size distribution of the sintered pieces. The results show that µ″ depends on the sintered microstructure and that there is a limiting value of the average grain size (~20–25 µm) from which the electromagnetic properties of these kinds of materials worsened significantly.  相似文献   
995.
High relative permittivity and low dielectric loss were simultaneously achieved in the percolative nanocomposites with methoxypolyethylene glycol (mPEG) modified multi-walled carbon nanotubes (MWCNTs). The dense mPEG layer with a thickness of approximately 1.7 nm was continuously coated on the surface of MWCNTs. MWCNTs exhibited excellent dispersibility after being functionalized by mPEG (mPEG@MWCNTs), the mPEG@MWCNTs/ethanol suspension was still turbid even when the suspension was deposited for two months. A high permittivity of 69.7 and a low dielectric loss of 0.042 were simultaneously achieved in the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) nanocomposite with 4.02 vol% mPEG@MWCNTs at 1 kHz. The improved dielectric properties in the nanocomposite is mainly ascribed to the following reasons: (i) the increased microcapacitors formed by MWCNTs and insulated dielectric composite; (ii) the enhanced interfacial polarization due to the homogeneous dispersion of mPEG@MWCNTs in the nanocomposites and tight adhesion between mPEG@MWCNTs and P(VDF-HFP) matrix.  相似文献   
996.
LiFePO4‐based cathodes suffer from various degradation mechanisms, which influences the battery performance. In this paper, morphological and structural degradation phenomena in laboratory cathodes made of LiFePO4 mixed with carbon black (CB) in a 1 mol/L LiPF6 in EC : DMC (1:1 by weight) electrolyte are investigated by transmission electron microscopy at various preparation, assembling, storage, and cycling stages. High‐resolution transmission electron microscopy imaging shows that continuous SEI layers are formed on the LiFePO4 particles and that both storage and cycling affect the formation. Additionally, loss of CB crystallinity, CB aggregation, and agglomeration is observed. Charge–discharge curves and impedance spectra measured during cycling confirm that these degradation mechanisms reduce the cathode conductivity and capacity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
997.
《Ceramics International》2016,42(7):8385-8394
We report the effect of calcination on the structural and optical properties of nanocrystalline NiO nanoparticles were successfully synthesized by virtue of a single source precursor method at mild reaction conditions between nickel nitrate and sodium hydroxide. Composition, structure and morphology of the products were analyzed and characterized by X-ray powder diffraction (XRD). The ultra-violet visible (UV–vis) absorption peaks of NiO exhibited a large blue shift and the luminescent spectra had a strong and broad emission band centered at 328 nm. The intense band gap was also observed, with some spectral tuning, to give a range of absorption energies from 2.60 to 3.41 eV. The various functional groups present in the NiO nanorods were identified by FTIR analysis. High resolution transmission electron microscopy (HRTEM) and the chemical composition of the samples the valence states of elements were determined by X-ray photoelectron spectroscopy (XPS) in detail. The electrochemical response of NiO proved that the nano-nickel has a high level of functionality due to its small size and higher electrochemical activity without any modifications. The above studies demonstrate the potential for the utilization of NiO nanoparticles as a promising material for opto-electronics applications.  相似文献   
998.
A new glowworm swarm optimization (GSO) algorithm is proposed to find the optimal solution for multiple objective environmental economic dispatch (MOEED) problem. In this proposed approach, technique for order preference similar to an ideal solution (TOPSIS) is employed as an overall fitness ranking tool to evaluate the multiple objectives simultaneously. In addition, a time varying step size is incorporated in the GSO algorithm to get better performance. Finally, to evaluate the feasibility and effectiveness of the proposed combination of GSO algorithm with TOPSIS (GSO–T) approach is examined in four different test cases. Simulation results have revealed the capabilities of the proposed GSO–T approach to find the optimal solution for MOEED problem. The comparison with own coded weighted sum method incorporated GSO (WGSO) and other methods reported in literatures exhibit the superiority of the proposed GSO–T approach and also the results confirm the potential of the proposed GSO–T approach to solve the MOEED problem.  相似文献   
999.
Copper is a good corrosion resisting element, but due to its immiscibility with Fe, it is only used as a minor-alloying element in stainless steels. In this work, we introduced a double-cluster structure model [CuNi12][NiFe12] m for stable solid solutions in Cu-containing Fe-Ni corrosion-resistant invar alloys. Our model takes into account all of the enthalpies between the element pairs by assuming Fe-Ni and Ni-Cu nearest neighbors and by avoiding Fe-Cu ones, so that the ideally stabilized structures are described by mixing two cuboctahedral clusters in the fcc lattice, NiFe12 and CuNi12. Two alloy series were designed by varying the relative proportions of the two clusters and the Cu contents. It was proved that the alloys with Cu contents below those prescribed by this model could easily be solutionized and water-quenched to a monolithic fcc solid solution, and resultant alloys possessed good corrosion-resisting properties in 3.5 wt pct NaCl solution.  相似文献   
1000.
We report a new mechanism of hydrophobic ripening for the formation of carbonaceous spheres by the dehydration of saccharides in a hydrothermal aqueous environment using fructose as a model precursor material. We investigated the formation of carbonaceous spheres from fructose in aqueous solutions under hydrothermal conditions. The spheres were found to contain 65.7 wt.% C, 4.3 wt.% H and 30.0 wt.% O, implying incomplete dehydration of the fructose. The spheres, typically ranging between 400 nm and 10 μm in diameter, are found to be constructed entirely of primary particles of ~5 nm. The chemical structure of the carbonaceous spheres and the chemical compositions of residual solutions were analysed using solid state and solution 13C nuclear magnetic resonance and Fourier transform infrared spectroscopy. Based on these results, a four-step mechanism for the formation and growth of carbonaceous spheres has been proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号